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We examine the evasion problem for a nonstationary conflict-controlled system 

from contact with a given target set from any point not belonging to this set, 

over an extensive arbitrarily long time. We have obtained sufficient conditions 

for the evasion. The paper abuts the investigations in /l-9/. 

1. Strtement of the problem. The gameequationis: 

z’ z f (t, z, u, u), z E E”, t E IO, m) (1.1) 

Here f (t, z, u, U) is a function continuous in the arguments and continuously differ- 

entiable in z , u and ir are the control parameters of players P and E, chosen from 

convex compacta U (t) and V (t), depending continuously on t , and belonging for 

all t to some compacta u and V from the Euclidean space E'". A terminal set ICI, 

which is a subset, is singled out in E" . Player P strives to lead the trajectory of sys- 

tem (1.1) onto set AI ; player E ‘s purpose is to prevent this contact. It is assumed that 

a constant C exists such that 

(2, f (t, 2, u, u)) < c (1 + II z 112), Vt, z, u E u (r), u E v (t> 

and the set t, z, u E T/’ (t) is convex for any f (t, z, U (t), v).The adversaries 
use e-strategies (see /lo/). The pair (t, Z) is called a position. 

We say that player E's e-strategy (rx) is given if for each position (t, z) there 
have been defined a number E (t, z), E (t. z) > 0, and a function 1'~ (8; t, Z), 

t < I) < t + 8 (t, z) satisfying the conditions: u (0) = IKE (6; t, z) is a measura- 

ble function of 8, taking values in set I’ (0). We say that player P’s e-startegy (rP) 
is given if for each position (t, z) there has been defined a function rp (0; E, u (a), 

t, z) which associates with the position (t, z) the number E > 0 and the function 

u (fJ), t < 8 Q t -+- e, a function u (0) = I?P (e;e, u (-), t, zj measurable for 

t<e<t+E and taking values in set u (0). A uniquely defined trajectory of 

system (1. l), continuable onto the semi-infinite time interval [to, oo) , corresponds to 

the collection (t,, z’, rp, FE) /lo/. 
Evasion is possible in game (1.1) if a strategy rE exists such that for any strategy rp 

the corresponding trajectorv of system (1. l), starting from any position (t,, z”) , 0 < 

tJI<a z" = z (to) c M, does not go onto set M for any value whatsoever of time 

t, r > t,. We go on to state the results. 
BJJ L we denote the orthogonal complement of M in En and we assume that dim L = 

Y > 2. If R is some subspace of L, than by nn we denote the operator of orthogonal 
projection from JT“ onto K, while 

YpR ={$ qER,[)$n= 1) 

Without loss of generality we can accept that set &! was singled out by relations depen- 
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ding only on the first mcomponents of vector z, m < n. We denote z8 L= (zr, 

. . ., z,), f* = (fl, . . ., f,). Then rh e membership z E M is completely deter- 

mined by vector z*. We compute formally the time derivatives of z* relative to sys- 

tem (1.1) with fixed controls 

f’*O’(*>=f*(*) 
i=1,2,... 

2. Nonlinear grmc. General ~180, The following evasion theorem holds. 
Theorem 1. Let there exist a number k, ?I! < v - 1, a subspace R, R C 15, 

dim R > k + 1, and a function 1 (t, z) , continuous in the arguments, with values 
in R , such that : 

a) the function f (t, z, u, u) is continuous in all the arguments, the function 

f* (t, z, U, v) is continuously differentiable in (t, z) up to order k - 1 , inclusive, 

while the functions fj (t, z, u, v), j = m + 1, n are continuously differentiable 

in (t, z) up to order k - .S - 2, where s = s (j), s < k - 1 is such a number 

that ‘f*ci) (t, z, U, u), i = 0, s - 1, do not depend upon zj, but f*(‘) (t, Z, u, v> 
now does depend on them ; 

b) the sets nRf,ci)(t, z, U (t), V (t)), i = 0, k - 2, consists of onepoint 

for any t, z, t > 0; 

cl min max min (9, ff-” (t, z, u, u) .- I (t, 2)) > 0 
aJLEYR uEV(t) uEU(t) 

for all t, z, t > 0, z E M. 
Then evasion is possible in game (1.1). 

Proof. We surround the subspace M bv a shell 

S(t) = {z: min max min ($, f:-l)(t, 2, u, 27) - I (t, z)) >O) 
QE’yR uaqt) uEU(t) 

and we consider a position (t,, 2’) such that z0 E S (t,) \ M. We fix an element 
u,, from V(t,), satisfying the condition 

(2.1) 

where the vector q. belongs to yn and satisfies the system of linear inequalities 

(&I, z”> > 07 (909 ,J (to, z”)> > 0 (2.2) 

($0, j!i’ (to, z”, r& u)> a 09 i=O,k-2 

System (2.2) is solvable for q,,since condition (b) holds and k + 1 < y. 

By h2, (z) we denote a sphere in E” of radius r with center at point z. By virtue of 
condition (c) and of the assumptions on the game parameters, we can choose Qro(zo) 

and the time interval [to, t, + a,], 6, > 0, so small that the inequality 

min ($0, f$Yl’(t, z, u, vo) - Z (to, z’)) > 0 (2.3) 
uEUU) 

is fulfilled by continuity for z E Q,., (z’) and t E [to, t, + S,l . From the assump- 
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tions on sets U (t) and Y (t) and on the fimction f (t, z, U, u) , using the Gronwall 
lemma t’llf we get that 6* > 0 exists such that a rrajectury of system (1, l), starting 
from point 2” = z (to) with a measurable control u (t), u (t) E U (t), and with 
u (t) = v. does not leave $‘2,, (z”) during time 6s. We denote ‘co - min (6,, 6,) 
and we construct the evasionstrategy rx*. To do this we set e (i!,, 2”) = (TO, v (t) = 
vo, ta 6 t < $0 -k 70~ Then control u (t) is determined by strategy I’p and system 
(1.1) can be integrated on the interval Its, $0 -!- %a$ to obtain trajectory z (t). 

Let the position (ta, 2”) be such that Z” ‘iEijiI s (to). We select !&, (z”) from the 
condition &., (z”) n M =f 9. Then zO > 0 exists such that a trajectory of system 
(1, l), starting at point Z* = z (t,) with measurable controls u(t) and U(~)~~(~) E U(t), 
u (t) E V (t), does not leave Q2,, (z*) during time x0. Having set E (t,, 2) = za 
and having chosen some measurable control u (t), u (t) E T’ (t), t, < t < t, + 
X0, we construct the evasion strategy rx *. Control U (t) is determined in accordance 
with j?p and, having integrated system (1.1) on It,, d, + zJ, we obtain trajectory 
s (0. 

Let us consider the projection of the first M components of trajectory z, (t), to < t < 
to + x0, z” E Js i&J) \ M, corresponding to the strategy pair (I-P, FE *), onto the 
direction of qs. According to Taylor’s theorem, by virtue of condition (a> 

With due regard to relations (2.1) - (2.3), from formula (2.4) it follows that 

(qo, z* (Q) > 0 for to < t < to + 70 (2.5) 

By 3 (t) we denote a compactum,depending continuously on t, such that s (t) c 
S (t) for any t, t > 0. Let us show that on the set 

z’ = (5V S (QkEft&Tf P*Q 

we can choose e (f, z) & z > 0, where 1: depends only on tO’, 1’ and s (t). From 
condition (c) follows 

Then, because the functions from (2.7) are continuous in a12 their arguments for the gi- 
ven A, there exist 6 > Q and r > 0 such that when t E It,,, t, + 61, z E S&. (z“) 
the function 

remains nonnegative for any position (tar 2”) ES 2’. The trajectory 2 (t), being an 
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absolutely continuous function, satisfies a Lipschitz condition with constant A’ in theset 

u 3 (5) and, ~o~equently, the function z (t), z (to) = Z” does not leave theset 
tE[td>Tl 
Q? (2”) during the time t” =-I r/K . Thus, for any positron (t, 2) E 2 we can choose 

E (t, .z) > min (6, to) = r > 0 

We showed earlier that for any position (to, z”), z” E S (to) \ M, a vector $J~, 

exists, r& E YE, such that on some time interval Ita, to + z,,l the projection of tra- 

jectory z* (t) onto the direction of $,increases monotonically, remaining positive, and, 
consequently, z (t) cannot intersect set M on the interval [&, t, -/- ‘co]. From the 

construction of the strategy rE * for the position (to, z’), 2’ ZZ S (to), it follows as well 
that z (t} does not intersect ill on some interval ItO, tO -I- “~~1. 

We now assume that the trajectory 2 (t) starting from point 2’ = Z (t,} E AI, first 

intersects set n/r at some finite instant tr, t, > t,, i.e. (9, z* (tr)) < 0 for all 

‘Ic, E L. Then, by virtue of the assumptions on the parameters of game (1. I), z (t), 
t,, < S < t < tl belongs to some compact set 3 (t) such that s (t) C s (t) for all 

t, t 2 0. by what we proved earlier, we can choose E (t, z) > T > 0 on the set 

{ 5, S (D,E,,-i,,,lI.. Let t, == t* -I- fit where Jo! < E (t*, z (t*)), t, > ?, t, is the 
instant at which control u (t) is presented. Then E (t*, z (t*)) > z and according to 
(2.5) there exists a vector q* E ‘l?n, R C L, such that 

(**, s* (1)) > 0 for t, < t < t, + a (t*9 s (t*)) 

which leads to a contradiction. by the same token we have proved Theorem 1. 

3, Nonlinsrr g&m8 with separated nonlinear controlling part, 
We assume that the right-hand side in the equation of motion (1.1) is of the form 

f (4 2, U, u) = g (t, 2) + frz (tl r.4 4 

The following theorem is valid. 

Theorem 2. Let the functions g (t, z) and h (t, u, u) be continuous in all their 

arguments and let there exist a tw~d~me~iona~ subspace B, R C L, and a continu- 
ous function 2 (t) with values in Ii, such that 

min max min (9, h (t, u, u) - I (t)) > 0, t E 10, m) 
kzYR ~czV(f) wzU(L) 

Then evasion is possible in game (1.1). 
P r 0 0 f . The reasoning is analogous to that in the proof of Theorem 1 with the sole 

difference that 6” \ 1?1 is chosen as s (t) and that for the position (to,?), 8 e &f, 
the element uO from V (to) is chosen from the relation 

moreover, q. E YR, (qo, -4 > 0, No, g (to, 27 + I (to)) > 0. Inequality 
(2.3) is replaced by 

(‘4’0, g (tt 4) + Ug;;I ($0, h (tt ~7 ~0)) > 0 

The set 2’ acquires the form [to’, T] x 2, where 2 is a compacturn from En, 
while relation (2.7) is changed to 
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4. Lfn@ar g&ma with ~~01Illl'k6&r Controlling part. Let the right-hand 

side in the equation of motion (1.1) have the form 

f (t, 2, u, V) == A (t) 2 $- h (t, u, 21) 

where A (t) is a square ( n X zz )-matrix. By ai (8) we denote the i-th row of mat- 

rix A (r), while by A, (t) ,the matrix consisting of the first m rows of matrix A (I). 

We formally form a sequence of matrices with the aid of the recurrence relation 

Bi (t> 2 &i-r (t) A (t) + Bi-1 (t), i = 1, 2, .,. 

where BO ft) = A, f$>t while tie symbol B’ (t) denotes the derivative of matrix 

B (t) s Thea the following theorem is valid. 

Theorem 3. her there exist a number k, k < Y - 1, a subspace R, I? C L, 

dim fi > k + 1, and a continuous function 1 (t) with values in R, such that: 

a) the function h (t, U, v) is continuous in all arguments, the matrix A, (t) and 

the function h, (t, U, V) are continuously differentiable in t up to order k - 1 t in- 

clusive, the functions aj (t), hj (& a, u), j = m + 1, n, are continuously differen- 
tiable in if up to order k - s - 2, where s = s (j) < k - 1 is a number such that 

Bi (t) z, i = 0, s - 1, do not depend up011 Zj, but B, (t) z now does depend upon 

them ; 
b) the sets n;n Bi (t) h (t, U (t), V (t)), i = 0, k - 3, consist of onepoint 

for t E [O, oD); 

c> aoin max min (9, BK_2 (t) h (t, u, u) - 1 (t)) > 0 
4erR UEm ira.w 

for all t E [O, 00). 
Then evasion is possible in game (1.1). 
Proof. We consider a position (to, z’), z0 S M. We fix an element 17s from 

1’ (t,), satisfying the condition 

moreover, I/Y* belongs to prR and satisfies the system of linear inequalities 

(90,z”I z 0 14*2) . 

Py virtue of condition (b), inequalities (4.2) do not depend on u and v . From relations 
(4.1) ,(4.2), and condition (c) we obtain 
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$0, Bk-l ftO) zo + 

8P-qt u v) 

* at’ ’ t=t, i- l(~o)) + 

Consequently, there exists Q,, (2’) and an interval [to, t, + a,], 6, > 0, so small 

that 
($0, Bk-1 (t) z) + ~~~~~(~~, h’,k-%t at vo)) > 0 

From the assumptions on the parameters of game (1.1) follows the existence of &> 0 
such that a trajectory of system (1. l), starting at point z” = 2 (to) with a measurable 

control u (t), u (t) E U, and with u (t) = uo, does not leave !&, (2’) during time 

g2. Having set ‘to = min (6,, 6,), E (to, z”) = r. and U (t) = z Uo, to \<t < 
t 0 + To, we construct strategy I E *. The control u (t) is determined in accord with 

strategy rP and system (1.1) can be integrated on the interval Ita, t,, $- x0] to obtain 

trajectory z (t)_ 
With due regard to relations (4. l), (4.2) and condition (c), from Taylor’s formula we 

obtain an estimate for the projection of trajectory z* (t) corresponding to me collection 

(&I, z”, P‘p, rg) onto the direction of q. 

(%Y z* (t)) > 0, t, < t < t, + ‘to 

Let us show that on the set [to’, Tl X 2, where 2 is a compactum from E”, we can 

choose E (t, z) > IY > 0, where -c depends only on this set. 

By virtue of condition (c) 

min min max min (4, Bk-2 (t) h (t, r.8, v) - i (t)) = A > 0 
tE[fe’,T] tLE’fR =v(t) =u(f) 

Then 6 > 0 and f > 0 exist such that me function 

($O? Bk-I (t) z> $- min ($0, h’,-l) (h us vo)) 
uEU(t) 

remains nonnegative for t E [to, to 4 61, z E Q,. (z”), where (to, 2”) is an arbit- 

rary position from [to’, T] X 2, In 2 the trajectory z (t) satisfies a Lipschitz con- 
dition with constant H and, consequently, does not leave f& (z”) during the time t”- 

6/K. Thus, for any position (t, z) E [to’, T] X 2 we can choose 

E (t, z) > min (6, t”) = T > 0 

The subsequent reasonings are analogous to those in the concluding part of the proof of 

Theorem 1. 

5. linear game with linear controlling part. We assume matthe 

right-hand side in the equation of motion (1.1) has the form 

f (t, z, U, u) = A (t) z - u -,‘- u 

my WX (9) we denote the support function of a convex closed set X and by B* (t) , 
the matrix adjoint to B (t). For a comparison with the results in I%/ we present the 
following corollary stemming from Theorem 3. 

Corollary. Let there exist a number k, k < v - 1, a subspace R, R C L, 
dim & > k f 1, and a continuous function I (t) with values in R, such that: 
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a) the matrix A, (t) is continuously differentiable up to order k - 1 , inclusive, 

while the functions aj (t), j = m + 1, n, are continuously differentiable up to order 
k - s - 2, where s = s (j) < k - 1 is a number such thatBi(t)‘z, i= 0, s - 1, 

do not depend upon ~1, but B, (t) z now does depend upon them; 
b) the sets nn Bi (t) (-U (t) + V (r)), i = 0, k - 3 consist of one point 

for t E IO, 00); 

c) +zeR [ Cv) P:-z N 9) - KJW & (t) +) - NJ, l @))I > 0 

for all t E 10, co). 
Then evasion is possible in game (1.1). 

6, Example. The laws of motion of the pursuer and evader are given, respectively, 

by the equations z(P) +C1(t)z(P-l) + . . . +C,l(t)2'+Cp(t)2=u 

y(Q) + h (t) y(Q-1) + . . . + D,, (t) Y'+ D, (t) Y = v 

Here Z, y are vectors in a Euclidean space En, n > 2, .(i), y({b are the 1 &order time 

derivatives of z, Y ; CI (t), i = 12, Di (t), i = 1, are matrices depending continuously 

on t, t~[0, OD], UE U (t), VE c’(t), where b (t), 7 (t) are convex compacta from E”, 

depending continuously on t and belonging to some compacta U, V for each t . The 
terminal set is M = ((2, y): z = y}. It is assumed that Q 6-n - 1 and dim 7 (t) = n, 

t e [O, m). Having set 

z1= 5, 2z= x*, . . . , (P-1) . 
zp =x 'ZP+l =Y,z$+g=Y, * . .,Zp+q=Y (9-l) 

we pass to the equivalent system of differential equations. 

In the case being examined M is given by the equation 

Zi = ZP+19 L ={CCr 0, . * .,O, -oC, 0, . . ., 0} 
P 

where CI is an arbitrary vector of En. We denote 

u (t) = ((0, . . . , 0, - u, 0, . . . ) 0) : u E i7 (t)} 

P-l 

v (t) = ((0, . . . ) 0, v) : v E v (t)} 

p+rl---l 

where 0 is the null-vector of the space Pg. It is not difficult to verify that when q < p 

JCL Bi (t) (- u(t) + V(t)) = (0, . . ., 0), i = 0, q - 2 

and, hence, TcRB~ (t) (- U (1) + I’ (t)) = (0, . . .,O) for any R c ,5. According to the 

Corollary it is sufficient to fulfill one of the following conditions for evasion to be pos- 

sible: (1) 4 <p; (2) when q = p there exist a subspace R, R c L, dim R >, q--f- I: 

and a continuous function I (t) with values in R, such that 

min [WVcct, ($,) - Wcctj (9) - (+, ~(t))l> 0, Vt E IO, 00) 
GZYR 
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APPLICATION OF THE PERTURBATION METHOD 

TO SoME OPTIIUL CONTROL PROBLEMS 

PMM Vol.39, No.5, 1975, pp.788-796 

V. B. KOLMANOVSKII 

(Moscow) 
(Received April 9, 1973) 

We examine a quasilinear optimal control system. We justify the applicability 

of the perturbation method to some control problems. Various systems for con- 
structing an approximate solution of control problems with a small parameter 
were presented in /l - 4/. A number of practical optimal control problems can 

be described by systems containing linear terms and small, in general, nonlinear 
perturbing factors. The scheme of successive approximations of the perturbation 
method developed below, can prove to be useful for the analytic investigations 

of such problems. The method is justified for quasilinear systems with a quadra- 
tic performance index. 

1, Let a control system be given by the equation 


